Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-Phenylethyl phenyldithioacetate

Jing Gao, Yingwu Luo and Bogeng Li*

Zhejiang University, The Union State Key Laboratory of Chemical, Engineering, Polymer Reaction Engineering Division, Hangzhou, 310027, People's Republic of China

Correspondence e-mail: stella_gj@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.044 wR factor = 0.143Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The overall shape of the title compound, $C_{16}H_{16}S_2$, is like a capital 'M', with both planar benzene rings projecting to one side of the central thioacetate portion.

Received 13 January 2006 Accepted 12 May 2006

Comment

The title compound, (I), is commonly used as a chain-transfer agent in living-radical polymerizations. The S atom adjacent to the carbon with a double bond can be attacked by radicals and, in a reverse process, yields styrene radicals as shown in the scheme, in which I may indicate either an initiator-born radical or a long-chain propagating radical. The mediation of this compound in free-radical polymerizations leads to a well controlled molecular weight, a narrow molecular-weight distribution and an improvement in the extent of conversion.

radical adduct radicals

Overall, the shape of molecule (I) is like a capital 'M', with both planar benzene rings projecting to one side of the central thioacetate portion (Fig. 1). The dihedral angle between the two benzene planes is 126.5 (1)°. There are no unusually short intermolecular contact distances.

Experimental

Compound (I) was synthesized by the authors, using a literature procedure (Quinn, et al., 2001). Briefly, a simple Grignard reagent

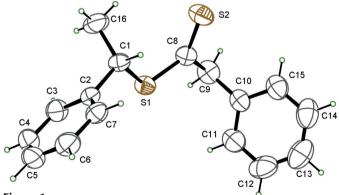


Figure 1

The structure of (I), showing 50% probability ellipsoids and the atomlabelling scheme.

© 2006 International Union of Crystallography All rights reserved

organic papers

was first synthesized from benzyl chloride and magnesium. The Grignard reagent and carbon disulfide then were used to produce a dithiocarboxylic acid salt, which was then acidified and subsequently underwent an addition reaction with styrene. The product (I) was crystallized by evaporation of a cold (268 K) methanol solution.

Crystal data

$C_{16}H_{16}S_2$	Z = 4
$M_r = 272.41$	$D_x = 1.220 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.311 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
b = 6.019 (2) Å	T = 298 (1) K
c = 22.003 (4) Å	Chunk, yellow
$\beta = 98.188 \ (10)^{\circ}$	$0.23 \times 0.20 \times 0.13 \text{ mm}$
$V = 1482.7 (6) \text{ Å}^3$	

Data collection

Rigaku RAXIS-RAPID	13414 measured reflections
diffractometer	3398 independent reflections
ω scans	2251 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.062$
ABSCOR (Higashi, 1995)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.916, \ T_{\max} = 0.957$	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_0^2) + (0.0814P)^2]$
$wR(F^2) = 0.143$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
3398 reflections	$\Delta \rho_{\text{max}} = 0.21 \text{ e Å}^{-3}$
163 parameters	$\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$

All H atoms were positioned geometrically and refined with riding constraints (C-H = 0.93–0.98 Å). The U_{iso} (H) values were set equal to $1.2U_{eq}$ (carrier atom).

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge Professor Jianming Gu from the Zhejiang University for help in determining the crystal structure.

References

```
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl.
  Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Quinn, J. F., Rizzardo, E. & Davis, T. P. (2001). Chem. Commun. 11, 1044-
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
```

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX, 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo,

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.